
Optimized Resource Management Decision
System (ORM-DS) for Distributed Infrastructure

Management in Cloud Computing
Nandini Kranti, Anand Singh Rajavat

Department of Computer Science & Engineering
Shree Vaishnav Institute Of Technology and Science, Indore (M.P), India

Abstract: Cloud computing is a business solution based
environments which supports scalable computing on demand
for the end user. Here the users demanded resources can be
provided with the help of cloud models. Mainly the models
deal with infrastructure, platform and software with
distributed and parallel processing plays the multiplexer role.
The system primarily uses virtualization technology to cope
with the computing needs. By using virtualization dynamic
resource requirements can be handled with service
optimizations. Sometimes this dynamic resource handling
suffers from the performance and utilization issues due to
their heterogeneous environments and availability. For
effectively allotting the resources to different process, they
must be analysed previously for detecting their occupancy and
residual means. Servers are continuously monitored for
detection of overutilization and underutilization for
understanding the loads of the system. Over the last few
decades the grid has evolve form Globus based system to
Nephele architecture for processing the parallel and
distributed jobs. This work suggests the improved scheduling
and job execution environments for traditional resource
handling approach using ORM-DS (optimized Resource
Management Decision System). It also manages and monitors
the dynamic allocation and deallocation. The proposed
approach is having 7 step process model starts with client
request and ends with the gird based resources to the
applications as per the requirements. It is based on
hierarchical structure of their utilizations with a heuristics
support for decision making. In future the trace driven
simulations and experimental results demonstrates the good
performance.

Index Terms- : Cloud Computing, Grid Computing, Resource
Handling, ORM-DS (optimized Resource Management-Decision
System);

I. INTRODUCTION

Cloud computing is the new paradigm providing the

user oriented services which are scalable in nature.
Normally this scalability is achieved by implementing the
basic construct of cloud i.e. virtualization [1]. Here the
issue mainly evolves in managing migrations of multiple
virtualization platforms and multiple virtual machines
across physical machines without disruption method. Here
the applied computing must ensures the load balancing
when multiple virtual machines run on multiple physical
machines. The field of managing resources and there

scheduling start with Cloud based working environment
and extended to cloud arena. Now as the distributed model
and processing is getting popularity is the market, working
on cloud is mandatory. Resource management is very
important and complex problems in cloud computing
environment. It becomes more complex when resources are
distributed geographically with heterogeneous environment
and are dynamic in nature [2].

There is a need of cloud computing that responds to
various requests more quickly. For that there are various
approaches suggested previously to optimize resource
grouping based on criteria such as delay, bandwidth and
semantics in order to select the resources more quickly and
appropriately. Along with that they also gives the new
orientation of applying different scheduling methodology
on these parallel clouds. Dealing with these varying
resource request and devices are termed as the area of
dynamic resource allocations (DRA) [3]. It deals with the
virtualization of machines which cloud be migrated
effectively on any host for serving the parallel processing.
Virtual machine monitors is the controlling mechanism
designed for handling of the dynamic resource requirements
of the cloud. It should also support the elastic nature and
can be able to expand or compress as per the service
requirements. The dynamic results confirmed that the
virtual machine which loading becomes too high it will
automatically migrated to another low loading physical
machine without service interrupt. And let total physical
machine loading reaching balance. It is however unclear
whether this technique is suitable for the problem at hand
and what the performance implications of its use are.

Resource Management with Distributed and Parallel
Processing
 Various resource discovery mechanisms are being
developed in the paradigm of distributed systems. Goal of
almost every mechanism is efficient and effective resource
management in fault tolerant and scalable manner. Since in
the real world of computing the Underlying environment is
heterogeneous and highly unpredictable therefore the
mechanisms have to be optimized and sometimes combined
for proper resource discovery and management. Cloud
inherits most of the properties of conventional distributed
systems. Resource management in Cloud has more or less
same goals of other distributed systems, but with the
difference that Cloud is organized in much better way [4].

Nandini Kranti et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1703-1709

www.ijcsit.com 1703

 Resource management is a complex task involving
security, fault tolerance along with scheduling. It is the
manner in which resources are allocation, assigned,
authenticated, authorized, assured, accounted, and audited.
Resources include traditional resources like compute cycles,
network bandwidth, space or a storage system and also
services like data transfer, simulation etc. A RMS is also
responsible for naming the resources in the system,
monitoring and reporting the job, resource status and
accounting for resource usage [5]. The RMS interacts with
the security system to validate user requests, the
information service to obtain information about resource
availability, the local system to schedule jobs on the local
resource management system.

General Issues in Resource Management for Cloud

(i) Exploitation of underutilized resources
(ii) Parallel CPU Capacity
(iii) Virtual resources and virtual organizations for

collaboration
(iv) Access to additional resources
(v) Resource Balancing
(vi) Reliability

Aim of this work is to provide a practical
implementation scenario through existing Cloud resource
discovery mechanisms and introduce a novel Cloud
scheduling methodology to enhance the processing criteria
in accordance with resource recovery management protocol.
There are some motivational factors behind the Cloud
deployment which are outlined here. These factors are one
of the driving forces for effective resource management.
The solution also includes a set of heuristics that prevent
overload in the system effectively while saving energy used.
It traces driven simulation and experiment results
demonstrate that our algorithm achieves good performance.

II. LITERATURE SURVEY

During the last few decades there are various
approaches developed and analysed for scheduling purposes.
Starting with the operating system enhancements followed
by Cloud oriented approaches and the recent support from

cloud computing. Among them those which are relating
with the work is taken out here as literature survey and
summarized as:

In the paper [6] the distributed resources’ handling is
measured for high-performance applications. These
applications use high-speed networks to integrate
supercomputers, large databases, archival storage devices,
advanced visualization devices, and/or scientific
instruments to form networked virtual supercomputers or
meta-computers. The Globus system is intended to achieve
a vertically integrated treatment of application, middleware,
and network. A low-level toolkit provides basic
mechanisms such as communication, authentication,
network information, and data access. These mechanisms
are used to construct various higher-level meta-computing
services, such as parallel programming tools and schedulers.
The goal with the paper is to build an Adaptive Wide Area
Resource Environment (AWARE), an integrated set of
higher-level services that enable applications to adapt to
heterogeneous and dynamically changing meta-computing
environments.

The paper [7] suggested a Condor-G tool which is
enhanced form with certain modifications in Globus tool to
control the sudden growth in computing and storage
resources. It allows users to harness multi-domain resources
as if they all belong to one personal domain. Mainly it deals
with job management, resource selection, security, and fault
tolerance. It serves three requirements for implementing the
Clouds:
(i) They want to be able to discover, acquire, and

reliably manage computational resources
dynamically, in the course of their everyday
activities.

(ii) They do not want to be bothered with the location of
these resources, the mechanisms that are required to
use them, with keeping track of the status of
computational tasks operating on these resources, or
with reacting to failure.

(iii) They do care about how long their tasks are likely to
run and how much these tasks will cost.

Thus the Condor-G system leverages the significant
advances that have been achieved in recent years in two
distinct areas: (1) security, resource discovery, and resource
access in multi-domain environments, as supported within
the Globus Toolkit, and (2) management of computation
and harnessing of resources within a single administrative
domain, specifically within the Condor system. The user
defines the tasks to be executed; Condor-G handles all
aspects of discovering and acquiring appropriate resources,
regardless of their location; initiating, monitoring, and
managing execution on those resources; detecting and
responding to failure; and notifying the user of termination.
The result is a powerful tool for managing a variety of
parallel computations in Cloud environments.

The paper [8] describes yet another concept Pegasus
(Planning for Execution in Clouds) to map complex
scientific workflows onto distributed resources. Pegasus
enables users to represent the workflows at an abstract level
without needing to worry about the particulars of the target
execution systems. Since no single system can optimize a

Application
Level Services

Resource
Specific
Services

Security

Information

Services
Global

Resource
Manager

FIGURE 1: CLOUD BASED GLOBAL RESOURCE

MANAGEMENT TASK

Nandini Kranti et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1703-1709

www.ijcsit.com 1704

wide variety of workflows and environments. It allows the
users to customize various aspects of the system. In order to
collect and organize information about multiple sites, it
uses the indexing capabilities of MDS and RLS (the
Replication Location Index – RLI). This collective
information is utilized by Pegasus in the resource and
replica selection decisions. In order to use Pegasus in such
an environment, a resource, which could be a user’s
desktop, needs to be setup to provide Pegasus itself,
DAGMan and Condor- G. They provide the workflow
execution engine and the capability to remotely submit jobs
(hosts) to a variety of Globus-based resources. Some other
functionality implemented to achieve the desired goal are:
Submit Host, Transformation Catalog (TC), Pool
Configuration file and MDS.

The paper [9] covers some of the advanced topics with
Cloud development such as implementation of
virtualization in operating systems. It is useful in many
scenarios: server consolidation, virtual test environments,
and for Linux enthusiasts who still cannot decide which
distribution is best. One of its recent development example
are Kernel-based Virtual Machine, or kvm, is a new Linux
subsystem which leverages these virtualization extensions
to add a virtual machine monitor (or hypervisor) capability
to Linux. Using kvm, one can create and run multiple
virtual machines. These virtual machines appear as normal
Linux processes and integrate seamlessly with the rest of
the system.

Dryad [10] is a general-purpose distributed execution
engine for data parallel applications that combines
computational vertices with communication channels to
form a dataflow graph. Dryad runs the application by
executing the vertices of this graph on a set of available
computers, communicating as appropriate through files,
TCP pipes, and shared-memory FIFOs. The vertices
provided by the application developer are quite simple and
are usually written as sequential programs with no thread
creation or locking. Concurrency arises from Dryad
scheduling vertices to run simultaneously on multiple
computers, or on multiple CPU cores within a computer.
The application can discover the size and placement of data
at run time, and modify the graph as the computation
progresses to make efficient use of the available resources.
The Dryad execution engine handles all the difficult
problems of creating a large distributed, concurrent
application: scheduling the use of computers and their
CPUs, recovering from communication or computer
failures, and transporting data between vertices.

An extension of above tool is DryadLINQ as suggested
in [11]. It is a system and a set of language extensions that
enable a new programming model for large scale distributed
computing. It generalizes previous execution environments
such as SQL, MapReduce, and Dryad in two ways: by
adopting an expressive data model of strongly typed .NET
objects; and by supporting general-purpose imperative and
declarative operations on datasets within a traditional high-
level programming language. A DryadLINQ program is a
sequential program composed of LINQ expressions
performing arbitrary side effect- free transformations on
datasets, and can be written and debugged using

standard .NET development tools. The DryadLINQ system
automatically and transparently translates the data-parallel
portions of the program into a distributed execution plan
which is passed to the Dryad execution platform. Dryad,
which has been in continuous operation for several years on
production clusters made up of thousands of computers,
ensures efficient, reliable execution of this plan.

The paper [12] addresses the problem of scheduling
concurrent jobs on clusters where application data is stored
on the computing nodes. This setting, in which scheduling
computations close to their data is crucial for performance,
is increasingly common and arises in systems such as
MapReduce, Hadoop, and Dryad as well as many Cloud-
computing environments. This paper introduces a powerful
and flexible new framework for scheduling concurrent
distributed jobs with fine-grain resource sharing. The
scheduling problem is mapped to a graph data structure,
where edge weights and capacities encode the competing
demands of data locality, fairness, and starvation-freedom,
and a standard solver computes the optimal online schedule
according to a global cost model. The paper also gives an
evaluation implementation of this framework, called as
Quincy. It gets better fairness when fairness is requested,
while substantially improving data locality.

The paper [13] further gives a detailed study and
suggests some of changes in the recently developed model
of Map-Reduce. It is used as a programming model that
enables easy development of scalable parallel applications
to process vast amounts of data on large clusters of
commodity machines. Through a simple interface with two
functions, map and reduce, this model facilitates parallel
implementation of many real-world tasks such as data
processing for search engines and machine learning.
However, this model does not directly support processing
multiple related heterogeneous datasets. While processing
relational data is a common need, this limitation causes
difficulties and/or inefficiency when Map-Reduce is applied
on relational operations like joins. An improvements is
made the paper for Map-Reduce to develop a new approach
through Map- Reduce-Merge. It adds to Map-Reduce a
Merge phase that can efficiently merge data already
partitioned and sorted (or hashed) by map and reduce
modules. It also demonstrates that this new model can
express relational algebra operators as well as implement
several join algorithms.

Carrying forward the previous work on resource
scheduling and optimization the paper [14] suggested a
novel approach SCOPE (Structured Computations
Optimized for Parallel Execution) which is a declarative
and extensible scripting language. It is declarative because
here the users describe large-scale data analysis tasks as a
flow of data transformations, w/o worrying about how they
are parallelized on the underlying platform. And it is
extensible because it have list of user-defined functions and
operators. Also it supports structured computations for data
transformations consume and produce row sets that
conform to a schema with optimized parallel execution. It is
a yet another high-level language for large-scale data
analysis. It is a hybrid scripting language supporting not
only user-defined map-reduce merge operations, but also

Nandini Kranti et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1703-1709

www.ijcsit.com 1705

SQL-flavoured constructs to define large-scale data analysis
tasks.

The paper [15] suggests a many-task computing to
bridge the gap between two computing paradigms, high
throughput computing and high performance computing.
Many task computing differs from high throughput
computing in the emphasis of using large number of
computing resources over short periods of time to
accomplish many computational tasks, where primary
metrics are measured in seconds, as opposed to operations
per month. Many task computing denotes high-performance
computations comprising multiple distinct activities,
coupled via file system operations. Tasks may be small or
large, uni-processor or multiprocessor, compute intensive or
data-intensive. The set of tasks may be static or dynamic,
homogeneous or heterogeneous, loosely coupled or tightly
coupled. The aggregate number of tasks, quantity of
computing, and volumes of data may be extremely large. At
the evaluation point of view, it supports effectively parallel
processing. .

With the growth in parallel processing for Cloud based
application, now some more factors needs to be studied. It
is because of a new computing paradigm which raises its
ratio in market of distributed processing. It is cloud
computing which a combination of distributed, Cloud,
autonomic and utility is computing. The paper [16] covers
some of this aspect of developing the above solution for
cloud applications. The current processing framework
which is used in cloud or cluster computing serves the
different behaviour with separated requirements and tools. .
As a result, the allocated compute resources may be
inadequate for big parts of the submitted job and
unnecessarily increase processing time and cost. Thus the
paper discusses opportunities and challenges for efficient
parallel data processing in clouds and present our ongoing
research project Nephele. Nephele is the first data
processing framework to explicitly exploit the dynamic
resource allocation offered by today's compute clouds for
both, task scheduling and execution. It allows assigning the
particular tasks of a processing job to different types of
virtual machines and takes care of their instantiation and
termination during the job execution.

The paper [17] presents a parallel data processor based
programming model in collaboration with the so called
Parallelization Contracts (PACTs) and the scalable parallel
execution engine Nephele. The PACT programming model
is a generalization of the well-known map/reduce
programming model, extending it with further second-order
functions, as well as with Output Contracts that give
guarantees about the behaviour of a function. It also
describes the methods to transform a PACT program into a
data flow for Nephele, which executes its sequential
building blocks in parallel and deals with communication,
synchronization and fault tolerance.

In order to ensure cost-efficient execution in an IaaS
cloud, Nephele allows allocate/deallocate instances in the
course of the processing job, when some subtasks have
already been completed or are already running. However,
this just-in-time allocation can also cause problems, since
there is the risk that the requested instance types are

temporarily not available in the cloud. To cope with this
problem, Nephele separates the Execution Graph into one
or more so-called Execution Stages. An Execution Stage
must contain at least one Group Vertex. Its processing can
only start when all the subtasks included in the preceding
stages have been successfully processed. The paper [18]
develops a profiling subsystem for Nephele which can
continuously monitor running tasks and the underlying
instances. Based on the Java Management Extensions (JMX)
the profiling subsystem is, among other things, capable of
breaking down what percentage of its processing time a
task thread actually spends processing user code and what
percentage of time it has to wait for data.

 Summary:

(i) A policy issue remains as how to decide the
mapping adaptively so that the resource demands
of VMs are met while the number of physical
machines used is minimized.

(ii) No control over the business assets (data!): The
main assets in every company are its data files
with valuable customer information.

(iii) Risk of data loss due to improper backups or
system failure in the virtualized environment

(iv) High cost and loss of control

III. PROBLEM DEFINITION

Cloud provides a self configured computing with
massive data supports by distributed and parallel processing.
For applying the things practically the distributed concepts
are studied thoroughly. It mainly includes grid and cloud
based technologies where the resource and their load
optimizations depends on various factors and needs to be
managed simultaneously. Among them most useful is
resource handling and allocations due to its heterogeneous
executions. Effective resource handling is the key area of
work for dynamic allocation and handling using parallel
processing. Now, after studying the various research
articles, there are various direction of work had been found.
Majorly the areas where most of the cloud computing
performance for resource utilization depends are load
distribution, managing and monitoring resources,
scheduling and job queuing, feasible resource estimates
with application needs etc. The cloud resource
managements and dynamic request handling for resources
depends of scheduling and recoveries. In scheduling the
major factors which plays a vital role in improvement of
parallel processing is resource discovery, system selection
& job execution. Among them are the sharing of resources
among many users, the dependency between tasks and the
possible use and production of large data sets. As part of the
resource allocation problem one may also need to consider
parallel applications and their special needs such as how
many processors and what type of network interconnects
are needed to obtain good performance. There are some of
the identified area of work is detected as the problem is:
Scenario: Existing approaches does not deals with the
dynamic information mapping. Due to that the execution
environment lacks with complete information availability
for controlling the dynamic resource allocation and

Nandini Kranti et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1703-1709

www.ijcsit.com 1706

deallocation. Information required for complete analysis of
resource utilizations are:

(i) Load
(ii) Job Queue Length
(iii) Job Submission Servers
(iv) Data Transfer Server
(v) Constrained Scheduling Information’s

Thus for effectively measuring and predicting the resources
optimizations above factors are necessary which leads
towards improvements in load avoidance, resource handling
and scheduling and will handle hidden mapping.

IV. WORK EMBODIED

The cloud aims towards achieving the high
performance computing with respect to grid based resource
utilizations and optimizations. Here the virtualization
technology allocates data centre resources dynamically
based on application demands and support effective
computing by optimizing the number of servers in use. By
the suggested work implementations, a support has been
made to the automatic resource managements and
scheduling. Thus by the work following goals are pivoted:
 Overload avoidance: the capacity should be sufficient

to satisfy the resource needs of all VMs running on it.
Otherwise, it gets overloaded and can lead to degraded
performance of its VMs.

 Resource Handling and Scheduling: By this an efforts
had been made for improving the resource usages and
optimizations through effective mapping of distributed
processing in VMs.

 Hidden Mapping: Mapping is largely hidden from the
cloud users. Users with the systems service do not
know where their VM instances runs. It’s up to the
cloud provider to make sure the underlying physical
machines have sufficient resources to meet their needs.

V. PROPOSED SOLUTION

Managing resource always leads towards improving the
device dependencies and will raises the standard of the
system. For third party elastic computing offered by cloud,
optimizing the resources with their continuous monitoring
is a necessary task. Even though, the simple decisions
sometimes shows high complexity for fine grained access
control of data. Thus, if the occupancy of the resources are
not measured and monitored regularly, it will degrade the
future performance of user’s application deployments. This
work aims towards resolving the above problems of
resource management using an novel optimized resource
management decision system (ORM-DS).

The model focus on developing an analytical decision
system based on previous behaviors of resources and uses
this information for their further controlling and allocations.
It also aims towards developing and performance
monitoring solution which leads in reduction of risk
associated with usages of utilized resources. Also in cloud
the single resource based application sharing and
computation is easy the networked sharing based
computations. Especially if the distributed and parallel
processing is concerned, it should be a mandatory task. The

direction of work aims towards improving the traditional
resource job handling and scheduling for optimized
performances in grids and cloud.

The problem of scheduling has been only designed for
static, homogeneous cluster setups and disregards the
particular nature of a cloud. Thus some computation might
involve the benefits associated with the effective and
dynamic resource managements. Cloud scheduling involves
scheduling of resources over different and dispersed
domains. This might involve resource searching on multiple
administrative domains to reach a single machine or a
single administrative domain for multiple or single resource.
As mentioned before we are focusing our research on Cloud
scheduler or broker which has to make scheduling decisions
on an environment where it has no control over the local
resources and this scheduling is closely linked with GIS.

 Description of Model

The proposed model or ORM-DS is a seven step model
involves request, discovery, information processing, task
and job management, resource cluster management and the
complete decision for effective analysis. The step wise
operations are given as:

(i) Client or the user makes the initial request to the

system. It means the application has requested for
certain resources.

(ii) ORM module and decision making system gets this
request and performs resource scheduling through a
scheduler. As the requirements may vary with time
hence the scheduler is of dynamic nature.

(iii) The dynamic scheduler later on forwards the
request to resource discovery module. This module
starts its operations with authorization filtering
which involves the verification of the user
submitting job. This determines the access of user
on the desired resource. This procedure is not much
different than the traditional way of remote
authorization i.e. the job would not be permitted to
execute if the user has no access on that resource.
The next step after authorization is the specification
of the requirements given by the user. This might
include some static information such as operating
system or much dynamic information such as
memory. But in the Cloud environment it is highly
possible that application requirements might change
according to the matched target resource e.g.
depending on the system architecture the memory
and computing requirements might change. After
authorization and requirements specification, next
step involves the filtration of resources which do
not meet the minimum requirement criteria of user
application. At the end of this step the scheduler
will have the list of the resources for detail
investigation and discovery.

(iv) Next phase includes collection of all this
information with respect to some parameters of
queuing request, load and resource availability.

Nandini Kranti et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1703-1709

www.ijcsit.com 1707

(v) This collective information is later on passed to job
executor task launch (JETL) engine. It does the pre
task preparation required for dynamic resource
handling and making their job in a scheduled
manner. During this scheduling three more sub
operation are performed which reserves the
resource required for specific application to avoid
deadlocks. Next is the job executor and monitoring
which measure the performance of device with
request to process size. Last is the temporary file
cleaning for clearing all the intermediate record.

(vi) The above identified results are transformed to the
physical resource grids for service the applications
requests.

(vii) Finally an object containing all the resource, their
execution environment and their scheduled
instruction is return back to the ORM- decision
system for service the users demands.

These steps are very similar to the steps involved in
traditional computing paradigm. But these steps are carried
out considering the very dynamic nature of Cloud
environment. So by observing the above proposed
methodology on initial test result factor’s we can easily
enhance the capabilities of Cloud through the ORM-DS
approach.

VI. BENEFITS AND APPLICATIONS

(i) A flexible, scalable infrastructure management
platform has been architected and a prototype
implemented

(ii) Measurement of resource usage and end user
activities lies hands of the cloud service provider.

(iii) Opaque cost structure due to highly flexible usage of

cloud services.
(iv) Stable of cost structure
(v) The developed model is a resource allocation system

that can avoid overload in the system effectively
while minimizing the number of servers used.

(vi) It can also deals with the uneven utilization of a
server for multi-dimensional resource constraints.

(vii) With the collected data it can be able to detect both
computational as well as I/O bottlenecks.

VII. CONCLUSION

As of now the cloud has evolved exponentially which
requires lots of resources to satisfy the scalable demands of
users and their heterogeneity. The above work develops an
ORM-DS resource allocation system that can avoid
overload in the system effectively while minimizing the
number of servers and other devices used. The work had
also introduced a concept to measure the uneven utilization
of a server. By minimizing underutilizations and over-
utilizations through our designed modules, improvement is
expected in multi-dimensional resource constraints.
Resource computation, their management and scheduling
requires real time computation and monitoring. At the last
the successful development of suggested model will leads
towards definitive improvement in traditional resource
management.

REFERENCES

[1] Alessandro Ferreira Leite, Claude Tadonki, Christine
Eisenbeis, Tain´a Raiol, Maria Emilia M. T. Walter and
Alba Cristina Magalh˜aes Alves de Melo, “Excalibur: An
Autonomic Cloud Architecture for Executing Parallel

Optimized Resource Management
Decision System (ORM-DS)

Clients/Users

1
2

Resource Discovery

Authorization Filtering

Application Definition

Min. Requirement Filtering

Dynamic
Scheduler

Information
Gathering
(Resource,

Queue,
Load)

3

4

5

Grid/Cloud Server

Job Executor Task Launch (JETL)
Pre Task Preparation

Advance
Reservation

Job Execution &
Monitoring

Completion &
Cleanups

Scheduling 6

7

Figure 2: Seven Step Process for Optimized Resource Management Decision System (ORM-DS)

Nandini Kranti et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1703-1709

www.ijcsit.com 1708

Applications”, in ACM Publication, ISSN: 978-1-4503-
2714-5/14/04, doi: 10.1145/2592784.2592786, Apr 2014

[2] Sushma K S, Vinay Kumar V , “Dynamic Resource
Allocation for Efficient Parallel Data Processing Using RMI
Protocol”, in International Journal of Engineering and
Advanced Technology (IJEAT) ISSN: 2249 – 8958,
Volume-2, Issue-5, June 2013

[3] M.S.B.Pridviraju & K.Rekha Devi, “Exploiting Dynamic
Resource Allocation for Query Processing in the Cloud
Computing”, in International Journal of Computer Science
and Information Technologies (IJCSIT), ISSN: 5206 –
5209, Vol. 3 (5) , 2012,

[4] K.Krishna Jyothi , “Parallel Data Processing for Effective
Dynamic Resource Allocation in the Cloud”, in
International Journal of Computer Applications (0975 –
8887) Volume 70– No.22, May 2013

[5] Yagız Onat Yazır, Chris Matthews, Roozbeh Farahbod,
Stephen Neville, Adel Guitouni, Sudhakar Ganti and
Yvonne Coady,”Dynamic Resource Allocation in
Computing Clouds using Distributed Multiple Criteria
Decision Analysis”.

[6] Ian Foster and Carl Kesselman, “Globus:A Metacomputing
Infrastructure Toolkit”, yInformation Sciences Institute,
University of Southern California.

[7] James Frey, Todd Tannenbaum, Miron Livny, Ian Foster
and Steven Tuecke, “Condor-G: A Computation
Management Agent for Multi-Institutional Grids”,
University of Wisconsin Argonne National
Laboratory,Madison.

[8] Ewa Deelmana, Gurmeet Singha, Mei-Hui Sua, “Pegasus: A
framework for mapping complex scientific workflows onto
distributed systems”, Scientific Programming, IOS Press,
ISSN:1058-9244/05, 2005

[9] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin and
Anthony Liguori, “kvm: the Linux Virtual Machine
Monitor”

[10] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell and
Dennis Fetterly, “Dryad: Distributed Data-Parallel Programs

from Sequential Building Blocks”, in ACM, doi: 978-1-
59593-636-3/07/0003, 2007

[11] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu,
Úlfar Erlingsson, Pradeep Kumar Gunda and Jon Currey,
“DryadLINQ: A System for General-Purpose Distributed
Data-Parallel Computing Using a High-Level Language”, in
8th USENIX Symposium on Operating Systems Design and
Implementation

[12] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi
Wieder, Kunal Talwar and Andrew Goldberg, “Quincy: Fair
Scheduling for Distributed Computing Clusters”, in
Microsoft Research, Silicon Valley — Mountain View, CA,
USA

[13] Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao and D.
Stott Parker, “Map-Reduce-Merge: Simplified Relational
Data Processing on Large Clusters”, in ACM, doi: 978-1-
59593-686-8/07/0006, 2007

[14] Chaiken, R., Jenkins, B., Larson, P., Ramsey, B., Shakib,
D., Weaver, S., and Zhou, “SCOPE: Easy and Efficient
Parallel Processing of Massive Data Sets”, in PVLDB, 2010

[15] Ioan Raicu1, Ian T. Foster and Yong Zhao, “Many-Task
Computing for Grids and Supercomputers”, in IEEE, ISSN:
978-1-4244-2872-4/08, 2008

[16] Daniel Warneke and Odej Kao, “Nephele: Efficient Parallel
Data Processing in the Cloud”, in ACM, ISSN: 978-1-
60558-714-1/09/11, 2009

[17] Dominic Battré, Stephan Ewen and Fabian Hueske,
“Nephele/PACTs: A Programming Model and Execution
Framework for Web-Scale Analytical Processing”, ACM,
ISSN: 978-1-4503-0036-0/10/06, 2010

[18] Daniel Warneke and Odej Kao, “Exploiting Dynamic
Resource Allocation for Efficient Parallel Data Processing
in the Cloud”, in IEEE Transaction on Parallel &
Distributed Systems, ISSN: 1045-9219/11, doi:
10.1109/TPDS.2011.65,2011

Nandini Kranti et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1703-1709

www.ijcsit.com 1709

